32ARMA模型的参数估计1.ppt
《32ARMA模型的参数估计1.ppt》由会员分享,可在线阅读,更多相关《32ARMA模型的参数估计1.ppt(126页珍藏版)》请在一课资料网上搜索。
1、第四章 ARMA模型的参数估计,ARMA模型的参数估计 求和模型与季节模型的处理方法 回归与自回归混合模型的处理方法 其它时序模型的统计方法,模型参数估计一般分两步: 1、找出模型参数的初估计。常见三种方法(矩估计直接法,矩估计的逆函数法,矩估计的逆相关函数法) 2、在初估计的基础上,根据一定准则求得模型参数的精估计。常见两种方法(线性和非线性最小二乘方法,近似极大似然估计,第一节 自回归模型的拟合,如果时间序列 是平稳AR序列,根据此序列的一段有限样本值 对 的模型进行统计,称为自回归模型拟合 自回归模型拟合主要包括: (1) 判断自回归模型AR的阶数; (2) 估计模型的参数; (3) 对
2、拟合模型进行检验,一. AR(p)模型的参数估计 目的:为观测数据建立AR(p)模型 (1.1) 假定自回归阶数p已知,考虑回归系数 和零均值白噪声 的方差 的估计。 数据 的预处理:如果样本均值不为零,需将它们中心化,即将它们都同时减去其样本均值 再对序列按(1.1)式的拟合方法进行拟合,假定数据 适合于以下模型 (1.2) 其中,p为给定的非负整数, 为未知参数,记 为系数参数, 为独立同分布序列,且 , 与 独立,参数 满足平稳性条件,1. AR(p)模型参数的Yule-Walker估计 对于AR(p)模型,自回归系数 由AR(p)序列的自协方差函数 通过Yule-Walker方程 唯一
3、决定,白噪声方差 由 决定,AR(p)模型的自回归系数和白噪声方差的矩估计 就由样本Yule-Walker方程 (1.3) 和 (1.4) 决定,令 则(1.3),(1.4)式可写为,实际应用中,对于较大的p,为了加快计算速度可采用如下的Levison递推方法 递推最后得到矩估计,上式是由求偏相关函数的公式: 导出,定理1.1 如果AR(p)模型中的 是独立同分布的 ,则当 时 (1) (2) 依分布收敛到p维正态分 布,注:用 表示 的第 元素时,可知 依分布收敛到 ,于是 的 95%的渐近置信区间是 在实际问题中, 未知,可用 的 元素 代替 ,得到 的近似置信区间,2. AR(p)模型参
4、数的最小二乘估计 如果 是自回归系数 的估计,白噪声 的估计定义为 通常 为残差。 我们把能使 (1.6) 达到极小值的 称为 的最小二乘估计,记 则 ,于是 的最小二 乘估计为 即,相应地,白噪声方差 的最小二乘估计 式中 为 的p个分量,定理1.2 设AR(p)模型中的白噪声 是独 立同分布的, 是自回归系数 的最小二乘估计,则当 时, 依分布收敛到p维正态分布 注:对于较大的n,最小二乘估计和矩估计 (Yule-Walker)估计的差别不大,3. AR(P)模型的极大似然估计 假定模型AR(p)中的 为正态分布,则观测向量 的高斯似然函数为 相应的对数似然函数为 其中, 为 的协方差阵,
5、 表示 的行列式,使得对数似然函数 达到极大值的 和 称为 和 的极大似然估计,从另一角度考虑,注:当n充分大时,AR(p)模型参数的极大似然估计、最小二乘估计和矩估计(Yule-Walker估计)三者都非常接近,即三者渐近相等,它们都可以作为AR(p)模型的参数估计,这是AR(p)模型的独有的优点,例1.1. 由下列AR(1)序列 产生长度为n=300的样本,计算出前5个样本自协方差函 数值为 求参数的矩估计和最小二乘估计。 (1) 参数 的矩估计 分别为 将样本自协方差函数值代入得,2) 参数 的最小二乘估计 分别为,例1.2 求AR(2)模型 参数 的估计,这里n=300, (1) AR
6、(2)模型的矩估计为,计算出的前5个样本协方差函数值为 将其值代入上式得: (2) 最小二乘估计,注:一般在求高阶AR(p)模型参数的矩估计时,为了避免求高阶逆矩阵,可采用求偏相关函数的递推算法,求出 即为 的矩估计,将它们代入 的表达式可得,二. AR(p)模型的定阶 1. 偏相关函数的分析方法 一个平稳序列是AR(p)序列当且仅当它的偏相关函数是p步截尾的。 如果 p步截尾:当 时, ; 而 ,就以 作为p的估计,定理1.3 设 由 定义,如果AR(p)模型中的白噪声是独立同分布的, , 则对确定的kp,当 时, 依分布收敛到k维正态分布,推论:在定理1.3的条件下,对kp, 依分布收敛到
7、标准正态分布N(0,1)。 根据推论,对于AR(p)序列和kp,当样本量n比较大时, 以近似于0.95的概率落在区间 之内。于是对于某个固定的k,以 作为p的估计,或者根据推论有如下的检验方法:对于某个正整数p, 显著地异于零,而 近似等于零,其满足 (或 )的 个数占 的比例近似地为68.3%(或95.5%),则近似 地认为 在p步截尾, 初步判定为AR(p,例1.3(例1.1续)使用样本偏相关函数对AR(p)的模 型阶数作初步的判定。 结果:取上限 ,样本自相关函数 呈拖尾状, 而从15个偏相关函数来看,除 显著异于零之外,其余 14个中绝对值不大于 的有10个,于是 结论:初步判定为AR
8、(1)模型,前15个样本偏相关函数,例1.4(例1.2续)使用样本偏相关函数对AR(p)的模 型阶数作初步的判定。 结果:取上限 ,样本自相关函数 呈拖尾状, 而从15个偏相关函数来看,除 显著异于零之外, 其余14个中绝对值不大于 的有9个,于是 结论:初步判定为AR(2)模型,前15个样本偏相关函数,2. AIC准则方法(A-Information Criterion) 为了使拟合残差平方和 尽量小,而又不至于引 入过多的虚假参数的估计,Akaike于1973年引入如下 的准则函数,假定已有阶数p的上阶 , AIC(k)的最小值点 (若不唯一,应取小的)称为AR(p) 模型的AIC定阶,即
9、,具体步骤: 1. 取定p=k时,根据数据 使用前一小节所提的任何一种参数的估计方法,给出噪声方差 的估计 ; 2. 再找出AIC取极小值时,所对应的阶数p. 注:AIC定阶并不相合,AIC定阶通常会对阶数略有高估。故在应用中,当样本量不是很大时,使用AIC定阶方法,为了克服AIC定阶的不相合性,可使用BIC准则方法。设 为AR序列,则BIC准则函数为 将此准则函数达到最小值的解 作为p的估计,就是BIC准则方法。 注: 1. 理论上已证明BIC准则的定阶具有相合性。 2. 当n不是很大时,用BIC定阶有时会低估阶数p,造成模型的较大失真,故在实际问题中,特别当样本量不是很大时,BIC的定阶效
10、果并不如AIC定阶准则,例1.5(例1.1续)n=300个观测,定阶。 方法:观察偏相关函数,确定上界是P=10,对p=1,2,10 分别解Yule-Walker方程得到 的Yuler-Walker估计,再 对p=1,2,10分别计算出AIC和BIC函数,计算结果如下,结果:AIC(1)和BIC(1)分别是AIC和BIC函数的最小值。 结论:由AIC和BIC定阶可知阶数p=1,AIC函数图,BIC函数图,例1.6 (例1.2续) n=300个观测,定阶。 方法:观察偏相关函数,确定上界是P=10,对p=1,2,10 分别求出 的估计,再对p=1,2,10,计算AIC和BIC 函数,计算结果如下
11、,结果:AIC(2)和BIC(2)分别是AIC和BIC函数的最小值。 结论:由AIC和BIC定阶可知阶数p=2,AIC函数图,BIC函数图,例1.7:独立重复1000次实验,每次产生符合模型AR(4) 的300个观测,得到AIC和BIC定阶情况如下,在1000次模拟计算中AIC将阶数定为4的有674次,而BIC阶数定为4的有476次。BIC定阶对阶数低估的比率为51.5% 增大样本量n=1000,获得如下结果,AIC定出的平均阶数是Avc(AIC)=4.593,BIC定出的平均阶数是Avc(BIC)=3.996,故对于较大的样本量有必要综合考虑AIC定阶和BIC定阶,三. 拟合模型的检验 现有
12、数据 ,欲判断它们是否符合以下模型 式中 被假定为独立序列,且 与 独立。 原假设 :数据 符合AR(p)。故在 成立时,下列序列 为独立序列 的一段样本值序列,步骤: 1. 首先,根据公式 计算出残差的样本自相关函数, 2. 利用上一章关于独立序列的判别方法,判断 是否为独立序列的样本值 3. 根据判断结果,如果接受它们为独立序列的样本值,则接受原假设,即接受 符合AR(p),否则,应当考虑采用新的模型拟合原始数据序列,例1.8(例1.5续) 拟合后,给出残差头15个数据,有11个落在 之间, 故不能否定原假设,即 符合AR(1)模型,残差的图形,残差的自相关函数,例1.9(例1.6续) 拟
13、合后,给出残差头15个数据,有15个落在 之间,故不能否定原假设,即 符合AR(2)模 型,残差的图形,残差的自相关函数,第二节 滑动平均模型拟合,对于已给的时间序列数据 ,用MA(q)式的滑动平均模型去拟合它们,称为滑动平均模型拟合。 滑动平均模型拟合主要包括: (1) 判断滑动平均模型MA的阶数; (2) 估计模型的参数; (3) 对拟合模型进行检验,一. 参数估计 假定数据序列 适合以下模型 (2.1) 其中 为独立同分布的序列,且 ,q为给定的非负整数, 为 未知参数,并满足可逆性条件,1. 参数的矩估计方法 MA(q)序列的自协方差函数与MA(q)的模型参数有如下 公式: 故, 和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 32 ARMA 模型 参数估计
